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Abstract

Rodent progressive cardiomyopathy (PCM) encompasses a constellation of microscopic findings 

commonly seen as a spontaneous background change in rat and mouse hearts. Primary histologic 

features of PCM include varying degrees of cardiomyocyte degeneration/necrosis, mononuclear 

cell infiltration, and fibrosis. Mineralization can also occur. Cardiotoxicity may increase the 

incidence and severity of PCM, and toxicity-related morphologic changes can overlap with those 

of PCM. Consequently, sensitive and consistent detection and quantification of PCM features are 

needed to help differentiate spontaneous from test article-related findings. To address this, we 

developed a computer-assisted image analysis algorithm, facilitated by a fully convolutional 

network deep learning technique, to detect and quantify the microscopic features of PCM 

(degeneration/necrosis, fibrosis, mononuclear cell infiltration, mineralization) in rat heart 

histologic sections. The trained algorithm achieved high values for accuracy, intersection over 

union, and dice coefficient for each feature. Further, there was a strong positive correlation 

between the percentage area of the heart predicted to have PCM lesions by the algorithm and the 

median severity grade assigned by a panel of veterinary toxicologic pathologists following light 
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microscopic evaluation. By providing objective and sensitive quantification of the microscopic 

features of PCM, deep learning algorithms could assist pathologists in discerning cardiotoxicity-

associated changes.
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Introduction

Progressive cardiomyopathy (PCM) is a common background finding in rodents that 

typically increases in incidence and severity with age.1,2 It is particularly common in rats, 

with a greater incidence in males.1,3 In some strains, such as Sprague Dawley, PCM can be 

identified in 100% of rats by 3 to 4 months of age.1,4 Primary histologic features of PCM in 

rodents consist of cardiomyocyte degeneration and/or necrosis, inflammatory cell infiltration 

that is predominantly mononuclear, fibrosis, and mineralization. Progressive 

cardiomyopathy can first be recognized as small, discrete foci of myocardial degeneration 

and/or necrosis accompanied by inflammatory cell infiltration.3,4–6 In later stages, necrosis 

and inflammation are replaced by varying degrees of fibrosis.3,5 Mineralization, as well as 

cartilaginous or osseous metaplasia, may also be present.2,3 Different temporal stages may 

occur simultaneously and any location in the heart may be affected.4,5

Importantly, cardiotoxicity can result in an increase in the incidence and severity of PCM, 

and toxicity-related morphologic changes can overlap with or mimic those of PCM.1,5 

Consequently, there is a need for consistent and sensitive detection as well as quantification 

of PCM-related changes to help differentiate spontaneous from test article-related findings. 

Recent work by Hailey et al6,7 has shown that pathologists vary in their diagnostic criteria, 

terminology, and severity grading approaches with regard to PCM. Application of 

harmonized diagnostic criteria does increase concordance among pathologists.7 Yet 

challenges remain in establishing and consistently applying severity grading criteria. The 

spectrum of lesions and temporal changes that characterize PCM also presents a challenge 

for creating a cohesive approach to diagnosing and grading among pathologists. The 

emergence of advanced image analysis capabilities, facilitated by deep learning approaches, 

could provide a method to meet the challenges of objectively quantifying the histologic 

features of PCM in a sensitive and consistent manner across studies.

Deep learning is a form of artificial intelligence (AI) in which raw data are analyzed via 

multiple layers of artificial neural networks to achieve classified output data from highly 

complex data sets. The process is highly adaptable to a variety of applications because a 

human engineer is not required to design every layer of the analysis procedure and the 

machine self-learns as new data are input.8 In recent years, deep learning approaches have 

enabled major advancements in the area of image analysis.8,9 Multiple studies have 

demonstrated the utility and advantages of applying deep learning approaches to histologic 

image analysis in a diagnostic setting.9–13 Image analysis algorithms have been designed to 

classify and grade histologic sections of tumors with an accuracy on par with a trained 
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anatomic pathologist.14,15 Furthermore, there is evidence that trained experts working in 

conjunction with such algorithms can achieve greater accuracy than either the expert or the 

algorithm working alone.16,17

We hypothesized that automated image analysis, facilitated by deep learning, would provide 

accurate and precise identification and quantification of PCM histologic features in rats. A 

supervised deep learning strategy was used to develop an algorithm for detecting and 

quantifying the major features of PCM: cardiomyocyte degeneration/necrosis, mononuclear 

cell infiltration (MNC), fibrosis, and mineralization. By providing a method to objectively 

quantify spontaneous background histologic changes, this algorithm can be an aid to 

pathologists in discerning cardiotoxicity-associated changes.

Materials and Methods

Case Selection

The National Toxicology Program database18 was searched for diagnoses of cardiomyopathy 

in the heart among control and treated, male and female Sprague Dawley (Hsd: Sprague 

Dawley SD) rats from any length study. Rats in which the heart had been concurrently 

diagnosed with significant lesions (such as neoplasms) were excluded. In addition, a subset 

of rats fitting the same criteria but lacking a diagnosis of cardiomyopathy was included. The 

hematoxylin and eosin (H&E) stained slides were obtained from archival storage.

Whole Slide Imaging

Prior to scanning, slides were checked for quality and defects. Slides with double thickness 

or insufficient mounting media affecting the tissue were rejected from the scanning process. 

Whole slide images (WSIs) were captured at 40× magnification on either an Aperio AT 

Turbo (Leica Biosystems) or a Hamamatsu NanoZoomer S360 (Hamamatsu). White balance 

and area selection procedures were performed as needed. The WSI files were reviewed for 

quality (focus and complete capture of heart tissue). Failed scans were removed and 

recaptured.

Algorithm Training

The performance of the algorithm was evaluated on the WSIs acquired as above. The data 

set was divided into 2 groups: training and validation. The training data set consisted of 300 

WSIs (Supplemental Table 1). An initial set of 20 WSIs was annotated by a board-certified 

veterinary pathologist for the histological parameters of PCM. The 300 WSIs in the training 

data set were annotated by an expert marker based on the pathologist’s sample annotations. 

During training, the WSIs were subdivided into tiles of size 512 × 512 pixels. A deep neural 

network model was trained on these tiles to segment or identify the histological parameters 

of cardiomyocyte necrosis, fibrosis, mineralization, and MNC. Different magnifications 

were used for each parameter, based on its size, context, and appearance. Parameter wise 

tiles were extracted from WSI at the desired magnification. These tiles were divided into 

training and validation sets, keeping a 90:10 ratio, respectively. The training set and 

validation set were mutually exclusive; tiles used for training were not used for validation 

and vice versa. Table 1 shows the training and validation data sets, with the magnification 
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used for the different parameters. A separate deep learning model was trained to identify 

blood vessels, red blood cells (RBCs), and the surrounding perivascular tissue region. These 

regions were subtracted from the prediction of the first model during postprocessing to 

eliminate false positives. This was followed by morphological operations, such as dilation, 

to filter outliers. Figure 1 illustrates the algorithm pipeline. During training, output WSIs 

were reviewed by a board-certified pathologist to identify false positive and false negative 

segmentation areas. During training, batch normalization and categorical cross-entropy loss 

function were used.

Network Architecture

This work employed fully convolutional network (FCN) 8s-Residual Net (ResNet) 50 

architecture which adopted an FCN deep learning technique,19 FCN8s with ResNet50 

convolution backbone.20 The network used in this work consisted of 4 stage encoding and 4 

stage decoding architecture (Supplemental Figure 1). To implement residual learning, the 

output of each stage of the encoding branch was added to the input of the analogous stage of 

the decoding branch and the element wise sum was fed into convolution layers for that 

decoding branch.

Implementation Details

The segmentation network was implemented using Caffe.21 Whole slide images were 

normalized by subtracting their mean and dividing by the standard deviation. While training, 

Adam optimizer22 was used with a learning rate of 0.00001 with an NVIDIA Tesla P100 

GPU (16 GB V-RAM) for training and inference. A python code was used to generate 

segmentation metrics for accuracy, intersection over union (IOU), and dice coefficient.

Evaluation of Test Cohort

A set of 300 H&E stained slides containing heart sections meeting the case selection criteria 

were chosen as a test cohort. Only control rats were used in the test cohort. The chosen 

sections represented the spectrum of cardiomyopathy-associated histologic changes and a 

range of severities. Five veterinary pathologists independently evaluated the same set of test 

cohort glass slides. For each slide, the pathologists were instructed to assign one of the 

following diagnoses: no abnormalities, PCM, PCM with >80% fibrosis, and other. For 

diagnoses of PCM/PCM with >80% fibrosis, pathologists were asked to provide a grade 

using criteria modified from Hailey et al7: grade 1, aggregate lesion size <45% field of view 

(FOV) for 40× objective; grade 2, aggregate lesion size ≥45% FOV for 40× objective and 

<5% of the heart section; grade 3, aggregate lesion size ≥5% but <25% of the heart section; 

grade 4, aggregate lesion size 25% but <50% of the heart section; and grade 5, aggregate 

lesion size ≥50% of the heart section. The test cohort glass slides were scanned to WSIs as 

above and evaluated by the trained image analysis algorithm. For algorithm testing, the 

WSIs were divided into tiles as above. Inference was performed on each of the tiles using 

the trained model. The tiles were then stitched back together to form the WSI with 

abnormality area segmented (Figure 2). For each parameter, output was quantified as a 

percentage of the total heart section area.
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Statistical Analysis

Statistical analyses comparing pathologist raters’ grades with AI scores were done in R 

(version 3.6.3)23 with package nnet (version 7.3–14).24 For the test cohort, AI predicted 

scores were calculated as the combined percentage area of the heart section affected by each 

of the 4 parameters (necrosis, fibrosis, MNC, and mineralization) and compared to the 

pathologists’ median grades. The distribution of AI scores showed a heavy positive tail, with 

observed scores ranging from 0.02% to 4.50% (median at 0.32%). Due to the skewness of 

the AI scores, a log (base 10) transformation was applied to the raw AI scores to normalize 

the distribution. To illustrate the relationship between the pathologists’ ratings and AI 

scores, local polynomial regression (LOESS)25 curves were fit to median grade as a function 

of AI scores (Figure 3) and median grade as a function of log10-transformed AI scores 

(Figure 4). Local polynomial regression curves are obtained by fitting polynomial regression 

in localized subsets of the data, with heavier weights given to points that are closest to the 

point of estimation. The smoothness of the curve is controlled by a span parameter which 

controls whether the curve follows local fluctuations or more global, smooth trends. A span 

of 0.75 was chosen to reflect the overall trend of the AI scores with median grade. A 

multinomial logistic regression model was fit to median grade (treated as categorical) as a 

function of the log10-transformed AI scores. Due to small counts (n = 3) in the grade 5 

category, grades 4 and 5 were combined in this analysis. Grade 0, which refers to a diagnosis 

of no abnormality, was used as the referent category.

Results

Algorithm Training and Testing

Schematic illustrations of the computer algorithm training and testing pipelines are shown in 

Figures 1 and 2. To confirm the importance of introducing a second pipeline in training for 

artifacts and background, an ablation study was conducted. In the first study, only test 

outputs for abnormality (ie, PCM features) were generated with no consideration of artifacts. 

The result was a significant number of false positives in the blood vessel region, the RBCs, 

and in the perivascular tissues (eg, mineralization in the vessel wall, MNC in the vessel 

lumen). Generating a separate pipeline for each of them sharply reduced the number of false 

positives (Figure 5). Such cases confirmed the necessity of using a separate pipeline for 

subtraction from the test output, so that accurate predictions of abnormality could be made.

The segmentation performance was evaluated on the validation data set. Table 2 shows 

quantitative performance based on accuracy, IOU, and dice coefficient. It shows that the 

algorithm was capable of segmenting individual parameters with few false positives. As 

illustrated in Figure 6, the algorithm could accurately segment all 4 parameters applicable to 

the diagnosis of cardiomyopathy. These parameters were quantified as percentage of the 

total area of a given heart section.

Pathologist Evaluation of the Test Cohort

Of the 300 test cohort slides, the veterinary pathologists reached consensus on 80% (241 of 

the 300 slides). Consensus was defined as having at least 3 of the 5 pathologist raters 

agreeing on the exact grade and PCM diagnosis. Of the remaining 59 samples where no 
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consensus was reached, 81% (48/59) had a range of 2 (that is, all pairwise pathologist 

ratings were within 2 grades of each other); 14% (8/59) had a range of 3; 3% (2/59) had a 

range of 4; and 1 sample had a mixed diagnosis (1 rater rated no abnormality, 2 raters 

diagnosed PCM of varying grades, and the other 2 raters had a non-PCM diagnosis).

Comparison of AI Algorithm Predictions to Pathologist Scores

Of the 300 test cohort slides, 1 sample was excluded due to mixed diagnosis, and 1 sample 

was removed due to a missing algorithm result. A total of 298 observations was used for 

further statistical analysis. Figures 3 and 4 show the distribution of the percentage of heart 

section affected as predicted by the algorithm at each grade. Grades are jittered on the y-axis 

to show the density of the observations. Violin plots (displayed in gray shaded areas) show 

the shapes or densities of the distributions, with wider areas representing larger counts and 

narrower areas indicating fewer counts. The AI scores were associated with a range of 

median pathologist grades, reflecting variability in grading among individuals. A smooth 

fitted (LOESS) curve illustrates the relationship between grade and AI score. Figure 3 shows 

a nonlinear increasing trend of median grade with increasing AI scores. After a log10 

transformation on the AI scores, the trend looks more linear (Figure 4). The Spearman rank-

order correlation between median grade and AI score was 0.82, suggesting a strong positive 

relationship between these 2 variables. The results from fitting a multinomial logistic 

regression model show that the predicted probabilities of each grade retained their ordering 

across AI scores (Figure 7), with increasing AI scores consistent with larger probabilities of 

higher severity grades.

Discussion

Using a deep learning technique, the automated image analysis algorithm was able to detect 

and quantify histologic features of rodent cardiomyopathy in histologic sections of rat heart. 

To validate the algorithm function, the predicted AI scores were compared to results from a 

panel of 5 experienced veterinary toxicologic pathologists. The results support a strong 

positive correlation between the pathologists and the automated image analysis algorithm for 

the detection and severity of rodent PCM. Notably, modeling the probability of a 

pathologist-assigned grade from the AI predicted scores preserved the ordering of median 

grade, suggesting that increasing AI scores corresponded to larger probabilities of higher 

grades. The amount of overlap in the predicted probabilities, most notably in the lower 

grades (grades 0, 1, 2), suggests limitations in this AI algorithm in distinguishing between 

pathologist-assigned grades at these levels. The AI scores also show considerable variability 

in this grade range. Concordance between the pathologists’ grades and AI scores improved 

in the higher severity grades (grades 3 and greater). In practice, exact agreement may be too 

narrow of a goal for the AI algorithm to achieve since there is inherent subjectivity in how 

pathologists assign grades. Although outside the scope of this study, investigation of 

individual cases within the test cohort may reveal potential sources of discrepancy, which 

could include algorithm function, interpathologist variability, and/or case-specific histologic 

changes, among others.
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Components of PCM were detected in all scans by the algorithm, even in those that the 

pathologists considered to have no PCM. Previous studies have already demonstrated a 

100% prevalence of PCM-related lesions in serial heart sections of young male Sprague 

Dawley rats.4 The heart sections in the test cohort were primarily from animals used in 

chronic studies and PCM increases with age.1,2 Therefore, a high prevalence for PCM in the 

test cohort is not surprising. As evident in Figure 7, cases considered to have no 

abnormalities by the pathologists (grade 0) typically had aggregate lesion areas of <0.1% of 

the heart section, as detected by the algorithm. This small percentage of the heart, 

particularly if present as fine fibrosis or individual myocytes, may be easily overlooked. 

Taken together, the results indicate the algorithm provides a highly sensitive way to detect 

the histologic changes of PCM and could be useful in establishing quantitative background 

levels of PCM in toxicity studies.

Given an input image, the goal of the deep learning model was to predict the label of each 

pixel by assigning a probability value to each pixel. To achieve this, we have employed 

FCN8s-ResNet50 architecture, a form of convolutional neural network (CNN). 

Convolutional neural networkss have provided very good results in terms of segmentation. 

They have also proved fit for segmentation in various medical images.26 Generally, 

segmentation using CNNs involves an encoder– decoder network. The encoder extracts the 

features from the images using CNNs like VGG27 or ResNet20 and the decoder performs the 

dense pixel-level classification. Two networks widely used for segmentation are Regional 

Convolutional Neural Networks28 and FCNs.19 Regional Convolutional Neural Network is a 

very time-consuming network and often fails to provide a clear boundary. On the other hand, 

FCN provides benchmark performance in various segmentation tasks and was therefore the 

network of choice for this application. The ResNet50 is well known due to its depth and the 

introduction of residual blocks. Residual blocks address the problem of training a really 

deep architecture by introducing identity skip connections so that layers can copy their 

inputs to the next layer.20

To maximize the data available for training and validation, parameter-wise image tiles 

extracted from training WSI were divided into mutually exclusive training and validation 

image sets. Deriving training and validation images from the same WSIs could potentially 

bias the model, however this is balanced against the overall large data set with varying 

composition (see Supplemental Table 1). We also wanted to avoid a model that was overfit, 

that is, the resulting model may be very good for the training data set but perform poorly on 

a new data set. To avoid this and increase generalization of the model, batch normalization 

was employed.29 The strong correlation of the AI scores with the pathologists’ grades for the 

entirely novel WSI test set suggests little or no overfitting from the chosen training 

methodology.

The AI algorithm successfully delineated and quantified individual components of PCM 

including cardiomyocyte necrosis, fibrosis, MNC, and mineralization. Although this study 

used combined scores of all components, future studies employing a similar testing 

methodology could be used for the individual components. The ability to separately quantify 

these components could be advantageous in elucidating test article-related effects. For 

example, a greater component of fibrosis in a treated group compared to controls could 
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reflect earlier onset or altered healing of PCM in the treated group. We envision this as a 

way for such an algorithm to be incorporated into the pathologist’s histopathologic 

evaluation and interpretation in toxicity studies, thereby enhancing the sensitivity of 

detecting differences between treated and control groups.

In this study, heart sections from control and test article-treated rats were used during 

algorithm training, while the test cohort contained only control rats. The use of both control 

and treated rats for algorithm training allowed for sufficient numbers of WSIs that captured 

the range of severities and features of PCM. Because the design of the testing phase in this 

study was not intended to evaluate test article-related differences, the decision was made to 

limit the test cohort samples to control rats only. Further studies to validate this algorithm 

would include applying the algorithm to a case study with test article-related cardiotoxicity 

to determine the algorithm’s ability to identify group-related differences.

The integration of AI-driven image analysis algorithms into the toxicologic pathology 

workspace presents a variety of possibilities and challenges. Certainly, further investigation 

is needed to address how severity grading traditionally employed by pathologists relates to 

the quantitative output that can be achieved through this technology. This work provides a 

basis for beginning to refine that relationship in the context of rodent PCM. This study also 

presents a model for applying automated image analysis algorithms to detect and quantify 

other spontaneous background findings in rodents, such as chronic progressive nephropathy. 

On a broader level, the use of AI-driven analysis in toxicity studies offers the potential to 

integrate histomorphology data with other data sets, such as genomic or metabolic data.30 

Such integration could reveal novel relationships between such data and histomorphology or 

provide insights into toxicologic mechanisms of action.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the algorithm analysis and output pipelines. Input data consisted of WSI 

subdivided into tiles. In the upper pipeline (abnormality pipeline), a deep neural network 

model was trained on the tiles to identify PCM-related abnormalities of necrosis, fibrosis, 

MNC, and mineralization. In the lower pipeline (artifact pipeline), a separate deep neural 

network was trained to identify blood vessels, RBCs, and perivascular tissue region. These 

segmented “artifact” regions were subtracted from the prediction of the upper model during 

postprocessing to eliminate false positives. MNC indicates mononuclear cell infiltration; 

PCM, progressive cardiomyopathy; RBCs, red blood cells; WSI, whole slide image.
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Figure 2. 
Cardiomyopathy algorithm training and testing pipeline. The WSIs of heart sections from 

Sprague Dawley rat hearts were divided into tiles of size 512 × 512 pixels. The tiles from the 

heart WSI were used to generate a trained model by using the encoder–decoder network (see 

also Supplemental Figure 1). For testing, the WSI was again divided into tiles. Inference was 

performed on each of the tiles using the trained model. The tiles were then stitched back 

together to form the WSI with abnormality areas segmented and color coded. WSI indicates 

whole slide image.
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Figure 3. 
Scatterplot of AI scores by median grade. Violin plots (in gray shaded areas) are overlaid to 

show the shape of the AI distribution within each grade. A smooth (LOESS) curve (blue 

solid line) illustrates the nonlinear relationship between the scores predicted by the AI 

algorithm and the pathologists’ ratings. AI indicates artificial intelligence; LOESS, local 

polynomial regression.
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Figure 4. 
Scatterplot of log10-transformed AI scores at each median grade. Violin plots (in gray 

shaded areas) are overlaid to show the shape of the AI distribution within each grade. A 

smooth (LOESS) curve (blue solid line) illustrates the relationship between the log-

transformed AI scores and the pathologists’ ratings. AI indicates artificial intelligence; 

LOESS, local polynomial regression.
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Figure 5. 
Sprague Dawley rat heart with color-coded segmentation areas. A-C, Algorithm output 

without the artifact pipeline. Fibrosis (red), mineralization (light blue), and MNC (yellow) 

were erroneously detected in the blood vessel. D-F, Algorithm output in the same sections 

with the artifact pipeline applied (after subtraction of blood vessel region, shown in blue). 

H&E stain, original scan 10×. H&E indicates hematoxylin and eosin; MNC, mononuclear 

cell infiltration.
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Figure 6. 
Sprague Dawley rat heart images before and after algorithm segmentation. A-C, Input 

images demonstrate microscopic features of PCM. D-F, The corresponding images 

following segmentation by the algorithm. Colored regions indicate areas predicted by the 

algorithm to have fibrosis (red), necrosis (green), mineralization (light blue), and MNC 

(yellow). Appropriate segmentation occurred even in areas of tissue fold artifact (E). H&E, 

original scan 5X. H&E indicates hematoxylin and eosin; MNC, mononuclear cell 

infiltration; PCM, progressive cardiomyopathy.
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Figure 7. 
Predicted probabilities of grade outcomes for given AI scores based on a multinomial 

logistic regression model of median grade as a function of the log10-transformed AI scores. 

AI indicates artificial intelligence; LOESS, local polynomial regression.
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Table 1.

Training and Validation Data Sets.

Parameter Magnification Training Data Set Validation Data Set

Fibrosis 10× 1118 tiles 124 tiles

Necrosis 20× 1116 tiles 124 tiles

MNC 20× 1055 tiles 117 tiles

Mineralization 10× 343 tiles 38 tiles

Abbreviation: MNC, mononuclear cell infiltration.
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Table 2.

Quantitative Performance of Algorithm Segmentation

Parameter Accuracy IOU Dice coefficient

Fibrosis 0.987 0.855 0.922

Necrosis 0.991 0.738 0.849

MNC 0.997 0.929 0.963

Mineralization 0.996 0.757 0.862

Abbreviation: IOU, intersection over union; MNC, mononuclear cell infiltration.
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